Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Fangjun Huo,^a Caixia Yin,^b Wei Guo,^a Chizhong Xia^{a*} and Pin Yang^bt

^aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, and ^bInstitute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of the Education Ministry, University of Shanxi, Taiyuan, Shanxi 030006, People's Republic of China

+ Additional correspondence author, email: yangpin@sxu.edu.cn.

Correspondence e-mail: xiac@public.ty.sx.cn

Key indicators

Single-crystal X-ray study T = 183 K Mean σ (C–C) = 0.006 Å R factor = 0.035 wR factor = 0.079 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://iournals.jucr.org/e.

© 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

Methyl 4-bromo-1,3-dimethylpyrazole-5-carboxylate

The crystal structure of the title compound, C₇H₉BrN₂O₂, has been determined in the triclinic space group $P\overline{1}$. There are three molecules in the asymmetric unit, arranged with approximate threefold rotation symmetry, and the three pyrazole rings are almost coplanar. A bromine atom at the 4-position of the pyrazole ring provides the possibility for synthesis of substituted pyrazole derivatives. Packing is governed only by van der Waals interactions.

Comment

As a functional compound, the title compound, (I), is useful in organic synthesis. The ester group at C3 can be reduced to a hydroxymethyl group by LiAlH₄ (Schenck et al., 1985). The existence of a bromine atom at C2 affords the possibility for the molecule to form new C-C bonds through the Suzuki cross-coupling reaction (Yin et al., 2002), with a series of aromatic boron compounds, making it a useful intermediate for organic synthesis.

The molecular structure and crystal packing are illustrated in Figs 1 and 2. Selected geometric parameters are listed in Table 1. Inspection of these values indicates that there is delocalization of the π -electron density in the pyrazole ring. There are three molecules in the asymmetric unit and the three pyrazole rings are nearly coplanar; they are related by an approximate threefold rotation axis. The independent molecules have different dihedral angles between the pyrazole ring planes and the ester planes, O = C - O. The dihedral angles formed by the pyrazole rings and the attached ester groups are 3.9 (6), 10.2 (5) and 6.4 (7)° for the C1, C1A and C1B molecules, respectively. The displacements of atoms Br1, C5, C7 from the pyrazole planes are in the range 0.005 (4)-0.095(5) Å. These displacements are probably caused by neighbouring interactions. All bond lengths are normal, but there are distortions in the exocyclic bond angles (Table 1). These may be caused by steric interactions involving the bromine atoms in particular. The packing is governed only by van der Waals interactions.

Experimental

The title compound was prepared by alkylation of 4-bromo-3methylpyrazole-5-carboxylic acid (Chambers & Denny, 1985), which Received 23 October 2003 Accepted 3 November 2003 Online 29 November 2003

Figure 1

A view of the three molecules in the asymmetric unit. Ellipsoids are drawn at the 50% probability level.

Figure 2

The packing of (I), viewed down the a axis.

was synthesized by bromination of 3-methylpyrazole-5-carboxylic acid in aqueous solution. To 4-bromo-3-methylpyrazole-5-carboxylic acid in anhydrous acetone solution was added dimethyl sulfate and anhydrous potassium carbonate, and the mixture was stirred at the boiling point for 24 h. The mixture was filtered and the filtrate evaporated to dryness. Crystallization from Et₂O/petroleum gave the title compound. The yield of the product was 76% (m.p. 330 K). Crystals suitable for single-crystal X-ray diffraction analysis were grown from a CCl₄ (3 ml) solution of the compound (100 mg) at room temperature.

Crystal data

C ₇ H ₉ BrN ₂ O ₂	Z = 6
$M_r = 233.07$	$D_x = 1.749 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 10.226 (2) Å	Cell parameters from 7285
b = 11.207 (2) Å	reflections
c = 11.778 (2) Å	$\theta = 2.3-26.1^{\circ}$
$\alpha = 80.75 \ (3)^{\circ}$	$\mu = 4.61 \text{ mm}^{-1}$
$\beta = 85.32 \ (3)^{\circ}$	T = 183 (2) K
$\gamma = 88.70 \ (3)^{\circ}$	Block, colorless
$V = 1327.7 (5) \text{ Å}^3$	$0.40 \times 0.20 \times 0.20$ mm

Data collection

Bruker SMART 1K CCD area-	4564 independent reflections	
detector diffractometer	3338 reflections with $I > 2\sigma(I)$	
ω scans	$R_{\rm int} = 0.018$	
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$	
(SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 6$	
$T_{\min} = 0.226, \ T_{\max} = 0.398$	$k = -13 \rightarrow 11$	
5487 measured reflections	$l = -14 \rightarrow 13$	
Refinement		
Refinement on F^2	H-atom parameters constrained	
$R[F^2 > 2\sigma(F^2)] = 0.035$	$w = 1/[\sigma^2(F_o^2) + (0.033P)^2]$	
$wR(F^2) = 0.079$	where $P = (F_o^2 + 2F_c^2)/3$	
S = 0.97	$(\Delta/\sigma)_{\rm max} = 0.001$	
4564 reflections	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$	
325 parameters	$\Delta \rho_{\rm min} = -0.47 {\rm e} {\rm \AA}^{-3}$	

Table 1

Selected geometric parameters (Å, °).

N1-C1	1.331 (5)	N2A - C3A	1.357 (5)
C1-C2	1.389 (5)	N1A - N2A	1.342 (5)
C2-C3	1.378 (5)	N1B-C1B	1.345 (5)
N2-C3	1.356 (5)	C1B-C2B	1.392 (6)
N1-N2	1.344 (4)	C2B-C3B	1.371 (5)
N1A - C1A	1.343 (5)	N2B-C3B	1.357 (5)
C1A - C2A	1.405 (5)	N1B-N2B	1.335 (5)
C2A - C3A	1.371 (6)		
C2-C1-C4	129.0 (4)	C2A-C3A-C5A	132.9 (4)
N1-C1-C4	121.1 (4)	N2A-C3A-C5A	121.4 (4)
C3-C2-Br1	129.0 (3)	C3A-N2A-C7A	130.4 (4)
C1-C2-Br1	124.3 (3)	N1A - N2A - C7A	117.3 (3)
C2-C3-C5	133.8 (4)	C2B-C1B-C4B	130.1 (3)
N2-C3-C5	120.8 (4)	N1B-C1B-C4B	120.6 (4)
C3-N2-C7	130.1 (4)	C3B-C2B-Br1B	129.3 (3)
N1-N2-C7	117.8 (3)	C1B-C2B-Br1B	123.2 (3)
C2A - C1A - C4A	129.8 (4)	C2B-C3B-C5B	133.2 (4)
N1A - C1A - C4A	121.7 (4)	N2B-C3B-C5B	122.3 (4)
C3A - C2A - Br1A	129.8 (3)	C3B-N2B-C7B	128.8 (4)
C1A - C2A - Br1A	122.8 (3)	N1 <i>B</i> -N2 <i>B</i> -C7B	117.7 (4)

H atoms were placed in geometrically idealized positions, with C-H = 0.98 Å, and were constrained to ride on their parent atoms, with $U_{iso} = 1.5U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* and *SHELXTL* (Bruker, 2000); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We sincerely acknowledge the support of the National Natural Science Foundation (No. 20272034) of China and the Provincial Natural Foundation of Shanxi.

References

Bruker (2000). SMART (Version 5.0), SAINT (Version 6.02) and SHELXTL.
Bruker AXS Inc., Madison, Wisconsin, USA.
Chambers D & Denny W A (1985) I Org Cham 50 4736 4738

Chambers, D. & Denny, W. A. (1985). J. Org. Chem. 50, 4736–4738. Schenck, T. G., Downes, J. M., Milne, C. R. C., Peter, B., Boucher, H., Whelan,

- J. & Bosnich, B. (1985). Inorg. Chem. 24, 2334–2337.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Yin, J., Rainka, M. P., Zhang, X. & Buchwald, S. L. (2002). J. Am. Chem. Soc. 124, 1162–1163.